Matematiske regler og begreber

Matrix rules and definitions

Matrix multiplicationAB=C -> C_{ij} = Sigma(n_l=1) a_{il}b_{lj}= +a_{i1}b_{1j}...+a_{in}b_{nj}(i=1...k;j=1...p)when order-A=(k x n) orderB(n x p)
Matrix transpose1.st row becomes 1.st col, 2.nd row -> 2.nd col ...
Matrix transpose properties
(-1)(A^T)^T=A
(-2)(lambdaA)^T=lambdaA^T
(-3) (A+B)^T=A^T+B^T
(-4) (A+B+C)^T=A^T+B^T+C^T
(-5)!! (AB)^T=B^TA^T
(-6)!! (ABC)^T=C^TB^TA^T
Row reduced form whennote: a zero row is a row that contains only zeroes [0000]
(R1)when matrix contains both nonzero- and zeroe-rows, all zeo-rows apear under all nonzero-rows
(R2)the first nonzero element in any nonzero-row is of value 1: [0 0 1 4 3]
(R3)All elements directly below the first nonzero element are 0 , the column has only zeroes below first nonzero element
(R4)the first nonzero element in any nonzero-row is left of previous first nonzero elements: r1[1234] r2[0123] r3[0012]
Diagonal matrixonly the diagonal contains nonzero numbers: r1[100]r2[060]r3[002]
Zero matrixall zeroes also the diagonal: r1[000]r2[000]r3[000]
Identity matrix Ithe diagonal matrix, containing only 1's in its diagonal: r1[100]r2[010]r3[001]
(-1)AI=A
(-2)IA=A
Symmetrix matrixA=A^T : r1[123]r2[245]r3[356]
Skew symmetrix matrix-A=A^T : r1[0 2 -3]r2[-2 0 1]r3[3 -1 0]
Lower triangular matrixa_{ij}=0 for j>i
(-1)product of two Lower triangular matrices is also a Lower triangular matrix
Upper triangular matrixa_{ij}=0 for i>j
(-1)product of two Upper triangular matrices is also a Upper triangular matrix